A Gray Image Quantum Encryption using GNEQR Representation
DOI:
https://doi.org/10.70715/jitcai.2024.v2.i1.002Keywords:
Quantum image encryption, GNEQR representation, quantum image processing, quantum gate , quantum encryption circuitAbstract
In the digital era, characterized by extensive online data exchange, information security has become a priority. While traditional encryption methods have proven effective in protecting data transfers, the advent of advanced quantum computing has increased susceptibility to security breaches. Quantum encryption provides a revolutionary solution to this problem by using quantum mechanics principles to establish algorithms that are impermeable to decryption. Using these quantum properties, cryptographic protocols are developed to provide superior security, unlike traditional encryption methods. The image plays an important role in transmitting information in all areas. Therefore, quantum image encryption methods are specifically designed to counter the potential risks posed by quantum computers, which can compromise conventional encryption protocols. This ensures the preservation of data security despite advances in quantum computing technology. In addition, quantum image encryption improves data transmission efficiency by establishing secure communication channels using quantum stats, thereby reducing the need for bandwidth and improving transmission speed. This paper proposes a new method of quantum encryption based on GNEQR representation and the modification of pixel values and positions in an image. After converting the image into a quantum form, we applied an algorithm to modify the values and positions of the pixels using a succession of quantum gates. We concluded this study with a statistical analysis showing the robustness of our quantum image encryption method.
References
REFERENCES
[1] F. Yan and S. E. Venegas-Andraca, Quantum Image Processing. Singapore: Springer Singapore, 2020. doi: 10.1007/978-981-32-9331-1. DOI: https://doi.org/10.1007/978-981-32-9331-1
[2] M. Naseri et al., “A new cryptography algorithm for quantum images,” Optik, vol. 171, pp. 947–959, Oct. 2018, doi: 10.1016/j.ijleo.2018.06.113. DOI: https://doi.org/10.1016/j.ijleo.2018.06.113
[3] J. Wang, Y.-C. Geng, L. Han, and J.-Q. Liu, “Quantum Image Encryption Algorithm Based on Quantum Key Image,” Int J Theor Phys, vol. 58, no. 1, pp. 308–322, Jan. 2019, doi: 10.1007/s10773-018-3932-y. DOI: https://doi.org/10.1007/s10773-018-3932-y
[4] P. Q. Le, F. Dong, and K. Hirota, “A flexible representation of quantum images for polynomial preparation, image compression, and processing operations,” Quantum Inf Process, vol. 10, no. 1, pp. 63–84, Feb. 2011, doi: 10.1007/s11128-010-0177-y. DOI: https://doi.org/10.1007/s11128-010-0177-y
[5] H.-S. Li, Q. Zhu, R.-G. Zhou, L. Song, and X. Yang, “Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state,” Quantum Inf Process, vol. 13, no. 4, pp. 991–1011, Apr. 2014, doi: 10.1007/s11128-013-0705-7. DOI: https://doi.org/10.1007/s11128-013-0705-7
[6] Y. Zhang, K. Lu, Y. Gao, and K. Xu, “A novel quantum representation for log-polar images,” Quantum Inf Process, vol. 12, no. 9, pp. 3103–3126, Sep. 2013, doi: 10.1007/s11128-013-0587-8. DOI: https://doi.org/10.1007/s11128-013-0587-8
[7] S. Yuan, X. Mao, Y. Xue, L. Chen, Q. Xiong, and A. Compare, “SQR: a simple quantum representation of infrared images,” Quantum Inf Process, vol. 13, no. 6, pp. 1353–1379, Jun. 2014, doi: 10.1007/s11128-014-0733-y. DOI: https://doi.org/10.1007/s11128-014-0733-y
[8] Y. Zhang, K. Lu, Y. Gao, and M. Wang, “NEQR: a novel enhanced quantum representation of digital images,” Quantum Inf Process, vol. 12, no. 8, pp. 2833–2860, Aug. 2013, doi: 10.1007/s11128-013-0567-z. DOI: https://doi.org/10.1007/s11128-013-0567-z
[9] H.-S. Li, P. Fan, H.-Y. Xia, H. Peng, and S. Song, “Quantum Implementation Circuits of Quantum Signal Representation and Type Conversion,” IEEE Trans. Circuits Syst. I, vol. 66, no. 1, pp. 341–354, Jan. 2019, doi: 10.1109/TCSI.2018.2853655. DOI: https://doi.org/10.1109/TCSI.2018.2853655
[10] L. Wang, Q. Ran, J. Ma, S. Yu, and L. Tan, “QRCI: A new quantum representation model of color digital images,” Optics Communications, vol. 438, pp. 147–158, May 2019, doi: 10.1016/j.optcom.2019.01.015. DOI: https://doi.org/10.1016/j.optcom.2019.01.015
[11] E. Şahi̇N and İh. Yilmaz, “QRMW: quantum representation of multi wavelength images,” Turk J Elec Eng & Comp Sci, vol. 26, no. 2, pp. 768–779, Mar. 2018, doi: 10.3906/elk-1705-396. DOI: https://doi.org/10.3906/elk-1705-396
[12] M. Abdolmaleky, M. Naseri, J. Batle, A. Farouk, and L.-H. Gong, “Red-Green-Blue multi-channel quantum representation of digital images,” Optik, vol. 128, pp. 121–132, Jan. 2017, doi: 10.1016/j.ijleo.2016.09.123. DOI: https://doi.org/10.1016/j.ijleo.2016.09.123
[13] X. Liu, D. Xiao, W. Huang, and C. Liu, “Quantum Block Image Encryption Based on Arnold Transform and Sine Chaotification Model,” IEEE Access, vol. 7, pp. 57188–57199, 2019, doi: 10.1109/ACCESS.2019.2914184. DOI: https://doi.org/10.1109/ACCESS.2019.2914184
[14] B. Wang, M. Hao, P. Li, and Z. Liu, “Quantum Representation of Indexed Images and its Applications,” Int J Theor Phys, vol. 59, no. 2, pp. 374–402, Feb. 2020, doi: 10.1007/s10773-019-04331-0. DOI: https://doi.org/10.1007/s10773-019-04331-0
[15] G. Xu, X. Xu, X. Wang, and X. Wang, “Order-encoded quantum image model and parallel histogram specification,” Quantum Inf Process, vol. 18, no. 11, p. 346, Nov. 2019, doi: 10.1007/s11128-019-2463-7. DOI: https://doi.org/10.1007/s11128-019-2463-7
[16] J. Su, X. Guo, C. Liu, and L. Li, “A New Trend of Quantum Image Representations,” IEEE Access, vol. 8, pp. 214520–214537, 2020, doi: 10.1109/ACCESS.2020.3039996. DOI: https://doi.org/10.1109/ACCESS.2020.3039996
[17] N. A. E.-S. Mohamed, H. El-Sayed, and A. Youssif, “Mixed Multi-Chaos Quantum Image Encryption Scheme Based on Quantum Cellular Automata (QCA),” Fractal Fract, vol. 7, no. 10, p. 734, Oct. 2023, doi: 10.3390/fractalfract7100734. DOI: https://doi.org/10.3390/fractalfract7100734
[18] K. Liu, Y. Wei, and H.-S. Li, “The quantum realization of image linear gray enhancement,” Quantum Machine Intelligence, vol. 5, no. 1, p. 15, Mar. 2023, doi: 10.1007/s42484-023-00102-7. DOI: https://doi.org/10.1007/s42484-023-00102-7
[19] H.-S. Li, Y. Xu, Y. Qin, D. Fu, and H.-Y. Xia, “The addition and subtraction of quantum matrix based on GNEQR,” Int. J. Quantum Inform., vol. 17, no. 07, p. 1950056, Oct. 2019, doi: 10.1142/S0219749919500564. DOI: https://doi.org/10.1142/S0219749919500564
[20] S. Rfifi, A. Maafiri, K. Chougdali, and A. Gueddana, “A new efficient model of quantum image cryptography based on sampled GNEQR storage presentation,” J. Korean Phys. Soc., vol. 78, no. 7, pp. 618–626, Apr. 2021, doi: 10.1007/s40042-021-00065-7. DOI: https://doi.org/10.1007/s40042-021-00065-7
[21] J. C. Garcia-Escartin and P. Chamorro-Posada, “A SWAP gate for qudits,” Quantum Inf Process, vol. 12, no. 12, pp. 3625–3631, Dec. 2013, doi: 10.1007/s11128-013-0621-x. DOI: https://doi.org/10.1007/s11128-013-0621-x
[22] Z. Wang, M. Xu, and Y. Zhang, “Review of Quantum Image Processing,” Arch Computat Methods Eng, vol. 29, no. 2, pp. 737–761, Mar. 2022, doi: 10.1007/s11831-021-09599-2. DOI: https://doi.org/10.1007/s11831-021-09599-2
[23] H.-S. Li, X. Chen, S. Song, Z. Liao, and J. Fang, “A Block-Based Quantum Image Scrambling for GNEQR,” IEEE Access, vol. 7, pp. 138233–138243, 2019, doi: 10.1109/ACCESS.2019.2942986. DOI: https://doi.org/10.1109/ACCESS.2019.2942986
[24] J. Shang and X. Xu, “Research on a double image security transmission algorithm of image encryption and hiding,” Measurement: Sensors, vol. 31, p. 100942, Feb. 2024, doi: 10.1016/j.measen.2023.100942. DOI: https://doi.org/10.1016/j.measen.2023.100942
[25] M. Planat and P. Solé, “Clifford groups of quantum gates, BN-pairs and smooth cubic surfaces,” J. Phys. A: Math. Theor., vol. 42, no. 4, p. 042003, Jan. 2009, doi: 10.1088/1751-8113/42/4/042003. DOI: https://doi.org/10.1088/1751-8113/42/4/042003
[26] M. Khan and H. M. Waseem, “A novel image encryption scheme based on quantum dynamical spinning and rotations,” PLoS ONE, vol. 13, no. 11, p. e0206460, Nov. 2018, doi: 10.1371/journal.pone.0206460. DOI: https://doi.org/10.1371/journal.pone.0206460
[27] M. Kumar, A. Aggarwal, and A. Garg, “A Review on Various Digital Image Encryption Techniques and Security Criteria,” IJCA, vol. 96, no. 13, pp. 19–26, Jun. 2014, doi: 10.5120/16854-6720. DOI: https://doi.org/10.5120/16854-6720
[28] K. Loukhaoukha, J.-Y. Chouinard, and A. Berdai, “A Secure Image Encryption Algorithm Based on Rubik’s Cube Principle,” Journal of Electrical and Computer Engineering, vol. 2012, pp. 1–13, 2012, doi: 10.1155/2012/173931. DOI: https://doi.org/10.1155/2012/173931
[29] J. Yu, C. Li, X. Song, S. Guo, and E. Wang, “Parallel Mixed Image Encryption and Extraction Algorithm Based on Compressed Sensing,” Entropy, vol. 23, no. 3, p. 278, Feb. 2021, doi: 10.3390/e23030278. DOI: https://doi.org/10.3390/e23030278
[30] M. Shi, S. Guo, X. Song, Y. Zhou, and E. Wang, “Visual Secure Image Encryption Scheme Based on Compressed Sensing and Regional Energy,” Entropy, vol. 23, no. 5, p. 570, May 2021, doi: 10.3390/e23050570. DOI: https://doi.org/10.3390/e23050570
[31] W. Song, C. Fu, M. Tie, C.-W. Sham, J. Liu, and H. Ma, “A fast parallel batch image encryption algorithm using intrinsic properties of chaos,” Signal Processing: Image Communication, vol. 102, p. 116628, Mar. 2022, doi: 10.1016/j.image.2021.116628. DOI: https://doi.org/10.1016/j.image.2021.116628
[32] Y. Ma, “Research and application of Big data encryption technology based on quantum lightweight image encryption,” Results in Physics, vol. 54, p. 107057, Nov. 2023, doi: 10.1016/j.rinp.2023.107057. DOI: https://doi.org/10.1016/j.rinp.2023.107057
[33] L. Wang, Q. Ran, and J. Ma, “Double quantum color images encryption scheme based on DQRCI,” Multimed Tools Appl, vol. 79, no. 9–10, pp. 6661–6687, Mar. 2020, doi: 10.1007/s11042-019-08514-z. DOI: https://doi.org/10.1007/s11042-019-08514-z
[34] H. Ogras, “An efficient color image encryption scheme based on a matrix scrambling method and a new hybrid chaotic map,” Cogent Engineering, vol. 8, no. 1, p. 1940638, Jan. 2021, doi: 10.1080/23311916.2021.1940638. DOI: https://doi.org/10.1080/23311916.2021.1940638
Downloads
Published
Data Availability Statement
This paper proposes a new quantum encryption method based on the GNEQR representation and the modification of pixel values and positions for a grayscale image.
Issue
Section
License
Copyright (c) 2025 Achraf ZEMATE, Moulay Brahim Sedra (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.